📒Data Science For Business ✍ Foster Provost

â™ Book Title : Data Science for Business
✍Author : Foster Provost
â™›Publisher : "O'Reilly Media, Inc."
♣Release Date : 2013-07-27
âśżPages : 414
â™ ISBN : 9781449374280
♬Available Language : English, Spanish, And French

READ NOW DOWNLOAD

📝Data Science for Business Book Synopsis : Written by renowned data science experts Foster Provost and Tom Fawcett, Data Science for Business introduces the fundamental principles of data science, and walks you through the "data-analytic thinking" necessary for extracting useful knowledge and business value from the data you collect. This guide also helps you understand the many data-mining techniques in use today. Based on an MBA course Provost has taught at New York University over the past ten years, Data Science for Business provides examples of real-world business problems to illustrate these principles. You’ll not only learn how to improve communication between business stakeholders and data scientists, but also how participate intelligently in your company’s data science projects. You’ll also discover how to think data-analytically, and fully appreciate how data science methods can support business decision-making. Understand how data science fits in your organization—and how you can use it for competitive advantage Treat data as a business asset that requires careful investment if you’re to gain real value Approach business problems data-analytically, using the data-mining process to gather good data in the most appropriate way Learn general concepts for actually extracting knowledge from data Apply data science principles when interviewing data science job candidates

📒Data Science For Dummies ✍ Lillian Pierson

â™ Book Title : Data Science For Dummies
✍Author : Lillian Pierson
â™›Publisher : John Wiley & Sons
♣Release Date : 2017-02-21
âśżPages : 384
â™ ISBN : 9781119327653
♬Available Language : English, Spanish, And French

READ NOW DOWNLOAD

📝Data Science For Dummies Book Synopsis : Your ticket to breaking into the field of data science! Jobs in data science are projected to outpace the number of people with data science skills—making those with the knowledge to fill a data science position a hot commodity in the coming years. Data Science For Dummies is the perfect starting point for IT professionals and students interested in making sense of an organization's massive data sets and applying their findings to real-world business scenarios. From uncovering rich data sources to managing large amounts of data within hardware and software limitations, ensuring consistency in reporting, merging various data sources, and beyond, you'll develop the know-how you need to effectively interpret data and tell a story that can be understood by anyone in your organization. Provides a background in data science fundamentals and preparing your data for analysis Details different data visualization techniques that can be used to showcase and summarize your data Explains both supervised and unsupervised machine learning, including regression, model validation, and clustering techniques Includes coverage of big data processing tools like MapReduce, Hadoop, Dremel, Storm, and Spark It's a big, big data world out there—let Data Science For Dummies help you harness its power and gain a competitive edge for your organization.

📒Big Data Mba ✍ Bill Schmarzo

â™ Book Title : Big Data MBA
✍Author : Bill Schmarzo
â™›Publisher : John Wiley & Sons
♣Release Date : 2015-12-11
âśżPages : 312
â™ ISBN : 9781119238843
♬Available Language : English, Spanish, And French

READ NOW DOWNLOAD

📝Big Data MBA Book Synopsis : Integrate big data into business to drive competitive advantage and sustainable success Big Data MBA brings insight and expertise to leveraging big data in business so you can harness the power of analytics and gain a true business advantage. Based on a practical framework with supporting methodology and hands-on exercises, this book helps identify where and how big data can help you transform your business. You'll learn how to exploit new sources of customer, product, and operational data, coupled with advanced analytics and data science, to optimize key processes, uncover monetization opportunities, and create new sources of competitive differentiation. The discussion includes guidelines for operationalizing analytics, optimal organizational structure, and using analytic insights throughout your organization's user experience to customers and front-end employees alike. You'll learn to “think like a data scientist” as you build upon the decisions your business is trying to make, the hypotheses you need to test, and the predictions you need to produce. Business stakeholders no longer need to relinquish control of data and analytics to IT. In fact, they must champion the organization's data collection and analysis efforts. This book is a primer on the business approach to analytics, providing the practical understanding you need to convert data into opportunity. Understand where and how to leverage big data Integrate analytics into everyday operations Structure your organization to drive analytic insights Optimize processes, uncover opportunities, and stand out from the rest Help business stakeholders to “think like a data scientist” Understand appropriate business application of different analytic techniques If you want data to transform your business, you need to know how to put it to use. Big Data MBA shows you how to implement big data and analytics to make better decisions.

📒Analytics ✍ Daniel Covington

â™ Book Title : Analytics
✍Author : Daniel Covington
â™›Publisher : Createspace Independent Publishing Platform
♣Release Date : 2016-02-19
âśżPages : 288
â™ ISBN : 1530135605
♬Available Language : English, Spanish, And French

READ NOW DOWNLOAD

đź“ťAnalytics Book Synopsis : SO MANY PEOPLE DREAM OF BECOMING THEIR OWN BOSS OR SUCCEEDING IN THEIR CHOSEN PROFESSION, AND WITH THE RESOURCES AVAILABLE TODAY, MORE ENTREPRENEURS AND PROFESSIONALS ARE ACHIEVING GREAT SUCCESS! HOWEVER, SUCCESS SHOULD BE DEFINED FOR THE LONG TERM, AND AS OPPORTUNITIES START TO GROW, SO DOES THE COMPETITION. Getting your business up and running or starting on your career path is one thing, but have a sustainable business or career is completely another. Many people make the mistake of making plans but having no follow-through. This is where analytics comes in. Don't you wish to have the power to know what your target consumers are thinking? Won't you want to have a preview of what future trends to expect in the market you are in? Well, this book is just the one you need. This book will teach you, in simple and easy-to-understand terms, how to take advantage of data from your daily operations and make such data a powerful tool that can influence how well your business does over time. The contents of this book are designed to help you use data to your advantage to enhance business outcomes! Here's what this book will teach you: Why data is your single most powerful tool How to conduct data analysis to enhance your business Which steps to take in performing predictive analysis What techniques you need to employ to achieve sustainable success PLUS: Regression techniques Machine learning strategies Risk management tips And much, much, more

â™ Book Title : Analytics in a Big Data World
✍Author : Bart Baesens
â™›Publisher : John Wiley & Sons
♣Release Date : 2014-04-15
âśżPages : 256
â™ ISBN : 9781118892749
♬Available Language : English, Spanish, And French

READ NOW DOWNLOAD

đź“ťAnalytics in a Big Data World Book Synopsis : The guide to targeting and leveraging business opportunities using big data & analytics By leveraging big data & analytics, businesses create the potential to better understand, manage, and strategically exploiting the complex dynamics of customer behavior. Analytics in a Big Data World reveals how to tap into the powerful tool of data analytics to create a strategic advantage and identify new business opportunities. Designed to be an accessible resource, this essential book does not include exhaustive coverage of all analytical techniques, instead focusing on analytics techniques that really provide added value in business environments. The book draws on author Bart Baesens' expertise on the topics of big data, analytics and its applications in e.g. credit risk, marketing, and fraud to provide a clear roadmap for organizations that want to use data analytics to their advantage, but need a good starting point. Baesens has conducted extensive research on big data, analytics, customer relationship management, web analytics, fraud detection, and credit risk management, and uses this experience to bring clarity to a complex topic. Includes numerous case studies on risk management, fraud detection, customer relationship management, and web analytics Offers the results of research and the author's personal experience in banking, retail, and government Contains an overview of the visionary ideas and current developments on the strategic use of analytics for business Covers the topic of data analytics in easy-to-understand terms without an undo emphasis on mathematics and the minutiae of statistical analysis For organizations looking to enhance their capabilities via data analytics, this resource is the go-to reference for leveraging data to enhance business capabilities.

📒Applying Data Science ✍ Gerhard Svolba

â™ Book Title : Applying Data Science
✍Author : Gerhard Svolba
â™›Publisher : SAS Institute
♣Release Date : 2017-03-29
âśżPages : 490
â™ ISBN : 9781635260540
♬Available Language : English, Spanish, And French

READ NOW DOWNLOAD

đź“ťApplying Data Science Book Synopsis : See how data science can answer the questions your business faces! Applying Data Science: Business Case Studies Using SAS, by Gerhard Svolba, shows you the benefits of analytics, how to gain more insight into your data, and how to make better decisions. In eight entertaining and real-world case studies, Svolba combines data science and advanced analytics with business questions, illustrating them with data and SAS code. The case studies range from a variety of fields, including performing headcount survival analysis for employee retention, forecasting the demand for new projects, using Monte Carlo simulation to understand outcome distribution, among other topics. The data science methods covered include Kaplan-Meier estimates, Cox Proportional Hazard Regression, ARIMA models, Poisson regression, imputation of missing values, variable clustering, and much more! Written for business analysts, statisticians, data miners, data scientists, and SAS programmers, Applying Data Science bridges the gap between high-level, business-focused books that skimp on the details and technical books that only show SAS code with no business context.

📒Python For R Users ✍ Ajay Ohri

â™ Book Title : Python for R Users
✍Author : Ajay Ohri
â™›Publisher : John Wiley & Sons
♣Release Date : 2017-11-13
âśżPages : 368
â™ ISBN : 9781119126768
♬Available Language : English, Spanish, And French

READ NOW DOWNLOAD

📝Python for R Users Book Synopsis : The definitive guide for statisticians and data scientists who understand the advantages of becoming proficient in both R and Python The first book of its kind, Python for R Users: A Data Science Approach makes it easy for R programmers to code in Python and Python users to program in R. Short on theory and long on actionable analytics, it provides readers with a detailed comparative introduction and overview of both languages and features concise tutorials with command-by-command translations—complete with sample code—of R to Python and Python to R. Following an introduction to both languages, the author cuts to the chase with step-by-step coverage of the full range of pertinent programming features and functions, including data input, data inspection/data quality, data analysis, and data visualization. Statistical modeling, machine learning, and data mining—including supervised and unsupervised data mining methods—are treated in detail, as are time series forecasting, text mining, and natural language processing. • Features a quick-learning format with concise tutorials and actionable analytics • Provides command-by-command translations of R to Python and vice versa • Incorporates Python and R code throughout to make it easier for readers to compare and contrast features in both languages • Offers numerous comparative examples and applications in both programming languages • Designed for use for practitioners and students that know one language and want to learn the other • Supplies slides useful for teaching and learning either software on a companion website Python for R Users: A Data Science Approach is a valuable working resource for computer scientists and data scientists that know R and would like to learn Python or are familiar with Python and want to learn R. It also functions as textbook for students of computer science and statistics. A. Ohri is the founder of Decisionstats.com and currently works as a senior data scientist. He has advised multiple startups in analytics off-shoring, analytics services, and analytics education, as well as using social media to enhance buzz for analytics products. Mr. Ohri's research interests include spreading open source analytics, analyzing social media manipulation with mechanism design, simpler interfaces for cloud computing, investigating climate change and knowledge flows. His other books include R for Business Analytics and R for Cloud Computing.

📒Machine Learning ✍ Jason Bell

â™ Book Title : Machine Learning
✍Author : Jason Bell
â™›Publisher : John Wiley & Sons
♣Release Date : 2014-11-03
âśżPages : 408
â™ ISBN : 9781118889060
♬Available Language : English, Spanish, And French

READ NOW DOWNLOAD

đź“ťMachine Learning Book Synopsis :

📒Analytics And Data Science ✍ Amit V. Deokar

â™ Book Title : Analytics and Data Science
✍Author : Amit V. Deokar
â™›Publisher : Springer
♣Release Date : 2017-10-05
âśżPages : 297
â™ ISBN : 9783319580975
♬Available Language : English, Spanish, And French

READ NOW DOWNLOAD

đź“ťAnalytics and Data Science Book Synopsis : This book explores emerging research and pedagogy in analytics and data science that have become core to many businesses as they work to derive value from data. The chapters examine the role of analytics and data science to create, spread, develop and utilize analytics applications for practice. Selected chapters provide a good balance between discussing research advances and pedagogical tools in key topic areas in analytics and data science in a systematic manner. This book also focuses on several business applications of these emerging technologies in decision making, i.e., business analytics. The chapters in Analytics and Data Science: Advances in Research and Pedagogy are written by leading academics and practitioners that participated at the Business Analytics Congress 2015. Applications of analytics and data science technologies in various domains are still evolving. For instance, the explosive growth in big data and social media analytics requires examination of the impact of these technologies and applications on business and society. As organizations in various sectors formulate their IT strategies and investments, it is imperative to understand how various analytics and data science approaches contribute to the improvements in organizational information processing and decision making. Recent advances in computational capacities coupled by improvements in areas such as data warehousing, big data, analytics, semantics, predictive and descriptive analytics, visualization, and real-time analytics have particularly strong implications on the growth of analytics and data science.

â™ Book Title : The Data Science Handbook
✍Author : Field Cady
â™›Publisher : John Wiley & Sons
♣Release Date : 2017-02-28
âśżPages : 416
â™ ISBN : 9781119092940
♬Available Language : English, Spanish, And French

READ NOW DOWNLOAD

📝The Data Science Handbook Book Synopsis : A comprehensive overview of data science covering the analytics, programming, and business skills necessary to master the discipline Finding a good data scientist has been likened to hunting for a unicorn: the required combination of technical skills is simply very hard to find in one person. In addition, good data science is not just rote application of trainable skill sets; it requires the ability to think flexibly about all these areas and understand the connections between them. This book provides a crash course in data science, combining all the necessary skills into a unified discipline. Unlike many analytics books, computer science and software engineering are given extensive coverage since they play such a central role in the daily work of a data scientist. The author also describes classic machine learning algorithms, from their mathematical foundations to real-world applications. Visualization tools are reviewed, and their central importance in data science is highlighted. Classical statistics is addressed to help readers think critically about the interpretation of data and its common pitfalls. The clear communication of technical results, which is perhaps the most undertrained of data science skills, is given its own chapter, and all topics are explained in the context of solving real-world data problems. The book also features: • Extensive sample code and tutorials using Python™ along with its technical libraries • Core technologies of “Big Data,” including their strengths and limitations and how they can be used to solve real-world problems • Coverage of the practical realities of the tools, keeping theory to a minimum; however, when theory is presented, it is done in an intuitive way to encourage critical thinking and creativity • A wide variety of case studies from industry • Practical advice on the realities of being a data scientist today, including the overall workflow, where time is spent, the types of datasets worked on, and the skill sets needed The Data Science Handbook is an ideal resource for data analysis methodology and big data software tools. The book is appropriate for people who want to practice data science, but lack the required skill sets. This includes software professionals who need to better understand analytics and statisticians who need to understand software. Modern data science is a unified discipline, and it is presented as such. This book is also an appropriate reference for researchers and entry-level graduate students who need to learn real-world analytics and expand their skill set. FIELD CADY is the data scientist at the Allen Institute for Artificial Intelligence, where he develops tools that use machine learning to mine scientific literature. He has also worked at Google and several Big Data startups. He has a BS in physics and math from Stanford University, and an MS in computer science from Carnegie Mellon.